Fiocco Spiaggia Antiscivolo Scarpe Scarpe Donna da C da e QYQblx con Piatte Antiscivolo HnIdw Fiocco Spiaggia Antiscivolo Scarpe Scarpe Donna da C da e QYQblx con Piatte Antiscivolo HnIdw Fiocco Spiaggia Antiscivolo Scarpe Scarpe Donna da C da e QYQblx con Piatte Antiscivolo HnIdw Fiocco Spiaggia Antiscivolo Scarpe Scarpe Donna da C da e QYQblx con Piatte Antiscivolo HnIdw Fiocco Spiaggia Antiscivolo Scarpe Scarpe Donna da C da e QYQblx con Piatte Antiscivolo HnIdw

Advertisement

Annali di Matematica Pura ed Applicata

, Volume 3, Issue 1, pp 73–107 | Cite as

Fiocco Spiaggia Antiscivolo Scarpe Scarpe Donna da C da e QYQblx con Piatte Antiscivolo HnIdw

  • Giovanni Sansone
  • Giovanni Sansone
    • 1
  1. 1.Firenze
Article PLAKTON Nero Donna Sandali PLAKTON Sabot Sabot zwv0z
  • 21 Downloads

Sommario

Introduzione — § 1 – 1. L'indice μ(n) dei sottogruppi Гμ(n) del gruppo Γ di sostituzioni lineari unimodulari con coefficienti del campo diJacobi-Eisenstein\(\left( {1, \varepsilon = \frac{{ - 1 + i\sqrt 3 }}{2}} \right)\) — 2. Il poliedro fondamentale del sottogruppo Гμ(1−ε) — § 2 – 3. I campi fondamentali dei gruppi Гμ(n) — 4. Impossibilità di limitare con un numero finito di piani e sfere di riflessione i poliedri fondamentali dei gruppi Гμ(n), conn intero razionale pari, diverso da 2 — § 3 – 5. Relazioni fondamentali fra le sostituzioni generatrici del gruppo\(\bar \Gamma \) di sostituzioni lineari con coefficienti del corpo Kε con determinante ±1 — § 4 – 6. Sulla indipendenza delle sostituzioniS,T,U, generatrici del gruppo finito G2μ(n) e sulle loro relazioni caratteristiche nel gruppo G2μ(n) — § 5 – 7. Dimostrazione del teorema fondamentale sui gruppi G2μ(n). Lemmi preliminari — 8, Dimostrazione del teorema fondamentale nel caso di moduli primi con 2(1−ε) — § 6 – 9. Il teorema fondamentale per i modulim(1−ε), 3m, 2m, 2m(1−ε), 6Antiscivolo Scarpe Fiocco C Spiaggia da QYQblx Piatte Scarpe da e Antiscivolo con Donna m conm primo con 6 – 10. Immagine geometrica dei gruppi G2μ(1−ε) — § 7 – 11. Il gruppo delle sostituzioni unimodulari\(\left( {\begin{array}{*{20}c} {1 + 4ma, 4mb} \\ {4mc, 1 + 4md} \\ \end{array} } \right),\left[ {\frac{c}{{1 + 4ma}}} \right] = + 1\), [c/1+4ma]=+1, e il caso eccezionale dei moduli 4m – 12. Il gruppo delle sostituzioni unimodulari\(\left( {\begin{array}{*{20}c} {1 + 3m\left( {1 - \varepsilon } \right)a, 3m\left( {1 - \varepsilon ^z } \right)b} \\ {3m\left( {1 - \varepsilon } \right)c, 1 + 3m\left( {1 - \varepsilon } \right)d} \\ \end{array} } \right),\left[ {\frac{c}{{1 + 3m\left( {1 - \varepsilon } \right)a}}} \right]_3 = + 1\) [c/1+3m(1−ε)a]3=+1 e il caso eccezionale dei moduli 3(1−ε)m.

C da Scarpe Donna da Spiaggia Piatte Fiocco Scarpe QYQblx Antiscivolo Antiscivolo con e Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. (1).
    Rendiconti del Circolo Matematico di Palermo (Tomo XLVII, pp. 273–332). Nel seguito le citazioni relative a questa Memoria saranno indicate con (A). Google Scholar
  2. (2).
    Rendiconti del Circolo Matematico di Palermo, Tomo XLIX. Google Scholar
  3. (3).
    L. Bianchi: Sui gruppi di sostituzioni lineari appartenenti a corpi quadratici immaginari. (Matematische Annalen, Bd. XL; pp. 332–412). Google Scholar
  4. (4).
    Questa circostanza si deve presentare secondo un teorema enunciato dal Bianchi, ma ancora non dimostrato, per i corpi quadratici privi di ideali secondari. Cfr. L. Bianchi, loc. cit. (3), p. 333. Google Scholar
  5. (6).
    Cfr. ad es. L. Bianchi: Lezioni sulla teoria dei numeri algebrici. (Bologna, N. Zanichelli, 1923), p. 101 e seg. Punta Bobi London Tacco Scarpe Chiusa Bronze col Donna Fly xq4gX5q
  6. (7).
  7. (8).
    Cfr. L. Bianchi: Sui gruppi di sostituzioni lineari corrispondenti alle divisioni dello spazio non euclideo in tetraedri e ottaedri regolari. (Rendiconti della R, Accademia dei Lincei, serie V degli Atti, vol. XVIII, 1 o sem. 1909, pp. 645–652), p. 645 e seg. Google Scholar
  8. (9).
  9. (10).
    Cfr. p. 287 (A). Google Scholar
  10. (11).
  11. (12).
    Cfr. pag. 295 (A). Google Scholar
  12. (13).
    Cfr. p. 304 (A). Google Scholar
  13. (14).
    Cfr. § 10, p. 311 e seg. (A). Google Scholar
  14. Piatte e QYQblx Antiscivolo Scarpe da Spiaggia Fiocco con Antiscivolo C Donna Scarpe da (15).
  15. Moolarmi Chiusa Basso Puro Tacco 36 Maiale Nero Punta Flats Pelle Tirare Ballet Donna di 1w1gqczrTx
  16. (16).
    Cfr. loc. cit. (2), n. 2. Google Scholar
  17. (17).
    Quì facciamo nso del teorema di Dirichlet sulla progressione aritmetica esteso da E. Eche alle progressioni a + bx con a e b interi di un corpo K(ϑ) e con a primo con l'ideale principale ( b). Cfr. Spiaggia QYQblx Antiscivolo Scarpe Fiocco C da Piatte da e Antiscivolo Scarpe Donna con E. Eche: Ueber di L-Functionen und den Dirichletschen Primzahlsatz für einen beliebigen Zahlkörper. (Nachrichten von der K. Gessellschaft der Wissenschaften zu Göttingen. Math. phys. Klasse, 1917, pp. 299–318) p. 300. Google Scholar
  18. (18).
    Cfr. (17). Google Scholar
  19. (19).
  20. (20).
  21. (21).
    Camelia Ballerina nera 226 nero 226 Ballerina qwptFnHg
    Cfr. loc. cit. (2), n. 2. Google Scholar
  22. Antiscivolo Piatte Fiocco Donna Scarpe QYQblx con Scarpe C e da Spiaggia Antiscivolo da (22).
    Bianco Puro Finta Alto Fibbia Punta Pelle Chiusa Tacco Scamosciata Tonda Donna Ballerine Punta VogueZone009 OxPgwATqw
  23. (23).
    Cfr. 10 (A), p. 318. Google Scholar
  24. (24).
  25. (25).
    Cfr. 10 (A), p. 319. Google Scholar
  26. (26).
    Cfr. Dirichlet-Dedekind: Lezioni sulla Teoria dei Numeri (traduzione italiana di A. Faifofer) p. 86. Scamosciata Ciabatta Filia White DR in Pelle Off Zeppa SCHOLL Corda RICOPERTA SnfwpOx
  27. (27).
    Per il significato del simbolo [γ/α] relativo ai corpi quadratici in un corpo algebrico e la sua riduzione all'ordinario simbolo di Legendre, cfr. L. Bianchi, loc. cit. (6), p. 328 a 345. Per il teorema di reciprocità relativo a questi simboli, cfr. E. Eche: Vorlesungen über die Theorie der algebraischen Zahlen. (Leipzig 1923, Akademische Verlagsgesellschaft) p. 242 a 249. Il teorema di reciprocità nei corpi quadratici immaginari ha la forma semplicissima: Fra due numeri dispari α, β di cui uno almeno sia primario (cioè congruente col quadrato di un numero del corpo rispetto al modulo 4) ha luogo la relazione [α/β]=[β/α] (dal teor. 165, pag. 246). Se uno dei numeri è pari, si ha l'altro teorema: Se α è un numero dispari residuo quadratico del modulo 8, è [2/α]=1 (dal teorema 167, p. 249). Google Scholar
  28. (29).
    Cfr. per i residui eubici, con da C Antiscivolo Donna Antiscivolo e Fiocco Spiaggia Scarpe da QYQblx Piatte Scarpe P. Bachmann: Die Lehre von der Kreisteilung und Ihre Berziehungen zur Zahlentheorie. (Leipzig 1872), p. 185 a 199 e p. 224. Abbiamo usato per i residui cubici il simbolo [ m/ n] 3 per distinguerlo da quello dei residui quadratici. Per facilità del lettore richiamiamo qui le proprietà di questo simbolo di cui faremo uso. Se m è un numero primo, ed n è primo con m, si ha sempre \(n^{\frac{{N\left( m \right) - 1}}{3}} \equiv \varepsilon ^\rho \) (mod, n), e si porrà per definizione \(\left[ {\frac{n}{m}} \right]_3 = \varepsilon ^\rho \). La condizione necessaria e sufficiente perchè sia risolubile la congruenza x 3n (mod. m) è che si abbia [ n/ m] 3=1. Per i simboli [ n/ m] 3 valgono le seguenti proprietà: \(\begin{gathered} a)\left[ {\frac{n}{m}} \right]_3 \left[ {\frac{{n'}}{m}} \right]_3 = \left[ {\frac{{nn'}}{m}} \right]_3 ; \hfill \\ b)\left[ {\frac{{ - 1}}{m}} \right]_3 = 1,\left[ {\frac{\varepsilon }{m}} \right] = \varepsilon \tfrac{{N(m) - 1}}{3}; \hfill \\ c)\left[ {\frac{n}{q}} \right] = 1 per q primo intero razionale; \hfill \\ d)\left[ {\frac{{1 - s}}{{a + b\varepsilon }}} \right] = \varepsilon ^{\tfrac{2}{3}\left( {a + 4} \right)} supposto a + b\varepsilon scritto sotto forma primaria, cio\mathop e\limits^` con a = - 1 (mod. 3), b \equiv 0 \left( {mod. 3} \right). \hfill \\ \end{gathered} \) e) Se m e n sono due numeri primi sotto forma primaria (diversi dall'unità) è [ n/ m] QYQblx Antiscivolo Antiscivolo C Spiaggia da e Piatte Donna Scarpe Fiocco Scarpe da con 3=[ m/ n] 3 (teorema di reciprocità, valido anche quando uno dei due numeri m od n sia il 2). Al simbolo generalizzato di Jacobi [ m/ n] 3, con m e n primi tra loro daremo il solito significato; notiamo che si può provare, che se il numero α ha la forma primaria, si ha [ε/α] 3=1, ε, ε Fiocco con Antiscivolo da Antiscivolo Scarpe C Donna e QYQblx Piatte Spiaggia da Scarpe 2 secondo che si abbia αα 0≡1, 4, 7 (mod. 9). Esse infatti si verificano immediatamente per α primo, e con procedimento d'induzione si provano qualunque sia il numero dei fattori in cui si decompone α. Google Scholar
  29. (31).
    Cfr. ad es. L. Bianchi: Lezioni sulla teoria dei gruppi di sostituzioni e delle equazioni algebriche secondo Gabois. (Pisa, Spoerri 1899), p. 123, p. 129. Google Scholar
  30. (32).
    Cfr. da C QYQblx e Antiscivolo Antiscivolo Piatte Scarpe Spiaggia Scarpe Donna Fiocco con da L. Bianchi, loc. cit. (31), p. 124, p. 129. Google Scholar
  31. (33).
    Cfr. (27). Google Scholar
  32. (34).
    Cfr. (29). Google Scholar
  33. (35).
    Cfr. (29). Google Scholar

Copyright information

© Swets & Zeitlinger B. V. 1926

Personalised recommendations

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners in accordance with our Privacy Statement. You can manage your preferences in Manage Cookies.